Stem Cell Research: An Opportunity for Autism Spectrum Disorders Treatment

Dario Siniscalco*1,2
1Department of Experimental Medicine, Division of Pharmacology, Second University of Naples, via S. Maria di Costantinopoli, 16 - 80138 Napoli, Italy
2Centre for Autism, La Forza del Silenzio, Caserta, Italy

Prevalence rate of autism spectrum disorders (ASDs) is fast increasing [1]. ASDs pathophysiology and defined mechanisms of their pathogenesis remain still unclear, rendering curative therapy very difficult. Current therapy for ASDs can be divided into behavioural, nutritional and medical approaches, however no defined standard approach exists [2]. In addition, pharmacological treatments are direct versus much dysfunctional behaviour, without affecting all core symptoms of ASDs [3]. Given that, further research is needed to define appropriate interventions for ASD patients [4].

Stem cell therapy represents the great real promise for the future of molecular and regenerative medicine. Indeed, a valid approach for curing several untreatable human diseases is offering from the use of several types of stem cells [5].

The epigenetic, neuroimmunological, and environmental studies on ASDs indicate that stem cell therapy could be a potent treatment for autistic syndromes, opening a new era in autism management [6,7]. In proof of principle, self-renewal ability with the capacity to generate more identical stem cells, the capacity to give rise to more differentiated cells, and the paracrine regulatory functions are stem cell properties that make them potential therapeutic agents for ASDs.

How stem cell could work in ASDs requires further investigations. Beneficial effects of stem cells could not be only restricted to cell restoration, but also paracrine and, above all, immunomodulatory effects may represent the possible mechanisms of action of stem cells in ASD pathology [6]. Indeed, the extraordinary characteristics of stem cells are: i) strong immunosuppressive activity that renders them a useful tool for successful autologous, as well as heterologous, transplantations without requiring pharmacological immunosuppression [8]; ii) paracrine actions [9]. Stem cells have the capability to produce a huge array of trophic and growth factors [10]. Through this natural paracrine activity, stem cells are able to produce molecules that activate endogenous restorative mechanisms within injured tissues contributing to recovery of function lost [6].

It is noteworthy that, due to the particular immune and neural system dysregulations observed in ASDs [11], stem cell therapy could offer extraordinary potential as a treatment modality.

Understanding the molecular, biochemical and cellular basis of ASDs could offer a unique advantage for the use of stem cell in these disorders, focalizing the real needs of every patient.

New perspectives for ASDs therapy is provided by stem cells. However, further deep and exhaustive investigations on stem cell biology will be needed before stem cell therapies can become a successful reality for ASDs. In addition, exact stem cell dose, times and sites of injections, as well as eventual side effects and long term safety, need further characterization. Future researches will drive their goal toward this direction [12].

References

*Corresponding author: Dario Siniscalco, ChemD, PhD, Department of Experimental Medicine, Division of Pharmacology, Second University of Naples, via S. Maria di Costantinopoli, 16 - 80138 Napoli, Italy, Tel: +39 (0)81 5665880; Fax: +39 (0)81 5667503, E-mail: dariosin@uab.edu

Received July 20, 2012; Accepted July 21, 2012; Published July 23, 2012


Copyright: © 2012 Siniscalco D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.